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B. Robust Testing 
Noise is inevitable in our real world, so it’s important to 

design an algorithm of a good robustness. We add pepper and 
salt noise to simulate contaminating effect in the real-world. 
We use noise density to measure different noise level. 
Supposed the original image from scanner is clean, we add 
different level noise to the clean image to generate images at 
different noise levels. Fig.7 presents a group of different level 
noise images. 

 number of contaminated pixels
number of total pixels

NoiseLevel �  (10) 

TABLE II.  RECOGNITION ACCURACY ON DIFFERENT NOISE LEVEL 

Methods 0 0.02 0.04 0.08 

gabor_4_4 99.24 98.95 98.72 97.97 
corner_gabor_4_4 99.43 97.79 96.01 93.32 
gabor_4_5 99.70 99.45 99.26 98.78 
corner_gabor_4_5 99.57 98.22 96.76 94.58 
 

 

Figure 7.  Text blocks at four noise level. 

Our method can still achieve a recognition rate beyond 90 
percent. It shows that our method works well though the 
images are severely contaminated. 

C. Time testing 
Speed is our method’s biggest advantage. As we know, 

Gabor feature extraction is time-consuming. We test our 
method and Zhu’s in a same way. Table III shows the duration 
time. Our method consists of two parts, which are the process 
of finding Harris corner and the process of extracting local 
Gabor feature. We respectively calculate duration time of them. 

TABLE III.  RESULT FOR FEATURE EXTRACTION’S TIME TEST 

Methods gabor_4_4 gabor_4_5 corner_gabor_4_4corner_gabor_4_5
corner Gabor corner Gabor

Average time for 
per-sample(ms) 451 571 16.6 7.1 16.6 8.9 

 

Our experiments were implemented on a PC with Intel(R) 
Core(TM)2 Duo CPU E8400 3.00GHz processor and 2 GB 
RAM. In this experiment, we extract the features of 10,000 
samples and get an average time for one image, which is 
showed in Table III. The image consists of 25 characters (5 
rows and 5 columns). Its size is 200 200� . The experimental 
result shows that our method is approximately 20 times faster 
than Zhu’s method. 

D. Font confusion 
Table IV shows the font confusion matrix for top ten fonts 

(the rest of 15 fonts is omitted for the sake of space). The table 
can tell us that the most similar fonts are YaHei and YaYuan. 

For the sake of the paper layout, we choose the top 10 font 
classes. We select 1000 training samples and 997 testing 
samples. From the confusion matrix, we can see that 1.81% 
YaYuan samples is mistaken for YaHei and 2.11% YaHei 
samples is mistaken for YaYuan. Fig.8 shows the YaYuan and 
YaHei samples. It’s also difficult for human beings to 
distinguish the two fonts. YaHei and YaYuan samples are 
similar except the turning places. 

TABLE IV.  FONT CONFUSION MATRIX (PERCENTAGE) 

Classes Hei YaHei XiHei YueHei MeiHei YaYuan XingKai 
Kai FangS

ong
Song

Hei 99.1 0.9 0 0 0 0 0 0 0 0 
YaHei 0.6 97.3 0 0 0 2.1 0 0 0 0
XiHei 0 0 1 0 0 0 0 0 0 0

YueHei 0 0.1 0 99.9 0 0 0 0 0 0 
MeiHei 0 0 0 0 99.9 0 0.1 0 0 0
YaYuan 0 1.8 0 0 0 98.2 0 0 0 0 
XingKai 0 0 0 0 0 0 1 0 0 0 

Kai 0 0 0 0 0 0 0 1 0 0 
FangSong 0 0 0 0 0 0 0 0 1 0 

Song 0 0 0 0 0 0 0 0 0 1 

 

YaHei

 

YaYuan

 
Figure 8.  Samples of YaHei and YaYuan. 

VI. CONCLUSIONS 
We have proposed a fast method for automatic font 

recognition. Our method is content-independent and shape-
independent. The training and testing image samples are not 
required to be a same shape because we just extract the texture 
feature of the interesting points. At the meanwhile, the feature 
extraction process is very fast. It’s 20 times faster than Zhu’s 
method [1]. The average recognition accuracy of 25 typefaces 
over 20000 samples is almost the same as Zhu’s method. 
However, it just spends 23.7ms for a testing sample of 200 
pixels by 200 pixels. Its high performance and fast speed 
makes the real-time font recognition become possible. 
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